In the past Joseph D. Viviano has collaborated on articles with Sonja Stojanovski and Colin Hawco. One of their most recent publications is Archival ReportResting-State Connectivity Biomarkers of Cognitive Performance and Social Function in Individuals With Schizophrenia Spectrum Disorder and Healthy Control Subjects. Which was published in journal Biological Psychiatry.

More information about Joseph D. Viviano research including statistics on their citations can be found on their Copernicus Academic profile page.

Joseph D. Viviano's Articles: (3)

Archival ReportResting-State Connectivity Biomarkers of Cognitive Performance and Social Function in Individuals With Schizophrenia Spectrum Disorder and Healthy Control Subjects

AbstractBackgroundDeficits in neurocognition and social cognition are drivers of reduced functioning in schizophrenia spectrum disorders, with potentially shared neurobiological underpinnings. Many studies have sought to identify brain-based biomarkers of these clinical variables using a priori dichotomies (e.g., good vs. poor cognition, deficit vs. nondeficit syndrome).MethodsWe evaluated a fully data-driven approach to do the same by building and validating a brain connectivity–based biomarker of social cognitive and neurocognitive performance in a sample using resting-state and task-based functional magnetic resonance imaging (n = 74 healthy control participants, n = 114 persons with schizophrenia spectrum disorder, 188 total). We used canonical correlation analysis followed by clustering to identify a functional connectivity signature of normal and poor social cognitive and neurocognitive performance.ResultsPersons with poor social cognitive and neurocognitive performance were differentiated from those with normal performance by greater resting-state connectivity in the mirror neuron and mentalizing systems. We validated our findings by showing that poor performers also scored lower on functional outcome measures not included in the original analysis and by demonstrating neuroanatomical differences between the normal and poorly performing groups. We used a support vector machine classifier to demonstrate that functional connectivity alone is enough to distinguish normal and poorly performing participants, and we replicated our findings in an independent sample (n = 75).ConclusionsA brief functional magnetic resonance imaging scan may ultimately be useful in future studies aimed at characterizing long-term illness trajectories and treatments that target specific brain circuitry in those with impaired cognition and function

Archival ReportPolygenic Risk and Neural Substrates of Attention-Deficit/Hyperactivity Disorder Symptoms in Youths With a History of Mild Traumatic Brain Injury

AbstractBackgroundAttention-deficit/hyperactivity disorder (ADHD) is a major sequela of traumatic brain injury (TBI) in youths. The objective of this study was to examine whether ADHD symptoms are differentially associated with genetic risk and brain structure in youths with and without a history of TBI.MethodsMedical history, ADHD symptoms, genetic data, and neuroimaging data were obtained from a community sample of youths. ADHD symptom severity was compared between those with and without TBI (TBI n = 418, no TBI n = 3193). The relationship of TBI history, genetic vulnerability, brain structure, and ADHD symptoms was examined by assessing 1) ADHD polygenic score (discovery sample ADHD n = 19,099, control sample n = 34,194), 2) basal ganglia volumes, and 3) fractional anisotropy in the corpus callosum and corona radiata.ResultsYouths with TBI reported greater ADHD symptom severity compared with those without TBI. Polygenic score was positively associated with ADHD symptoms in youths without TBI but not in youths with TBI. The negative association between the caudate volume and ADHD symptoms was not moderated by a history of TBI. However, the relationship between ADHD symptoms and structure of the genu of the corpus callosum was negative in youths with TBI and positive in youths without TBI.ConclusionsThe identification of distinct ADHD etiology in youths with TBI provides neurobiological insight into the clinical heterogeneity in the disorder. Results indicate that genetic predisposition to ADHD does not increase the risk for ADHD symptoms associated with TBI. ADHD symptoms associated with TBI may be a result of a mechanical insult rather than neurodevelopmental factors.

Research ReportSpread of activity following TMS is related to intrinsic resting connectivity to the salience network: A concurrent TMS-fMRI study

AbstractTranscranial magnetic stimulation (TMS) modulates activity at local and regions distal to the site of simulation. TMS has also been found to modulate brain networks, and it has been hypothesized that functional connectivity may predict the neuronal changes at local and distal sites in response to a TMS pulse. However, a direct relationship between resting connectivity and change in TMS-induced brain activation has yet to be demonstrated. Concurrent TMS-fMRI is a technique to directly measure this spread activity following TMS in real time. In twenty-two participants, resting-state fMRI scans were acquired, followed by four ten minute sessions of concurrent TMS-fMRI over the left dorsolateral prefrontal cortex (DLPFC). Seed-based functional connectivity to the individualized TMS target was examined using the baseline resting fMRI scan data, and the change of activity resulting from TMS was determined using a general linear model (High vs Low intensity TMS). While at the group level the spatial pattern of resting connectivity related to the pattern of TMS-induced cortical changes, there was substantial variability across individuals. This variability was further probed by examining individual's connectivity from the TMS target to six resting state networks. Only connectivity between the salience network (SN) and the TMS target site correlated with the RSC-TMS score. This suggests that resting state connectivity is correlated with TMS-induced changes in activity following DLPFC stimulation, particularly when the DLPFC target interacts with the SN. These results highlight the importance of examining such relationships at the individual level and may help to guide individual treatment in clinical populations.

Join Copernicus Academic and get access to over 12 million papers authored by 7+ million academics.
Join for free!

Contact us