In the past Herman Pontzer has collaborated on articles with David A. Raichlen and Brian M. Wood. One of their most recent publications is Relating ranging ecology, limb length, and locomotor economy in terrestrial animals. Which was published in journal Journal of Theoretical Biology.

More information about Herman Pontzer research including statistics on their citations can be found on their Copernicus Academic profile page.

Herman Pontzer's Articles: (7)

Relating ranging ecology, limb length, and locomotor economy in terrestrial animals

AbstractEcomorphological analyses have identified a number of important evolutionary trends in vertebrate limb design, but the relationships between daily travel distance, locomotor ecology, and limb length in terrestrial animals remain poorly understood. In this paper I model the net rate of energy intake as a function of foraging efficiency, and thus of locomotor economy; improved economy leads to greater net energy intake. However, the relationship between locomotor economy and net intake is highly dependent on foraging efficiency; only species with low foraging efficiencies experience strong selection pressure for improved locomotor economy and increased limb length. Examining 237 terrestrial species, I find that nearly all taxa obtain sufficiently high foraging efficiencies that selection for further increases in economy is weak. Thus selection pressures for increased economy and limb length among living terrestrial animals may be relatively weak and similar in magnitude across ecologically diverse species. The Economy Selection Pressure model for locomotor economy may be useful in investigating the evolution of limb design in early terrestrial taxa and the coevolution of foraging ecology and locomotor anatomy in lineages with low foraging efficiencies.

The Laetoli footprints and early hominin locomotor kinematics

AbstractA critical question in human evolution is whether the earliest bipeds walked with a bent-hip, bent-knee gait or on more extended hindlimbs. The differences between these gaits are not trivial, because the adoption of either has important implications for the evolution of bipedalism. In this study, we re-examined the Laetoli footprints to determine whether they can provide information on the locomotor posture of early hominins. Previous researchers have suggested that the stride lengths of Laetoli hominins fall within the range of modern human stride lengths and therefore, Laetoli hominins walked with modern-human-like kinematics. Using a dynamic-similarity analysis, we compared Laetoli hominin stride lengths with those of both modern humans and chimpanzees. Our results indicate that Laetoli hominins could have used either a bent-hip, bent-knee gait, similar to a chimpanzee, or an extended-hindlimb gait, similar to a human. In fact, our data suggest that the Laetoli hominins could have walked near their preferred speeds using either limb posture. This result contrasts with most previous studies, which suggest relatively slow walking speeds for these early bipeds. Despite the many attempts to discern limb-joint kinematics from Laetoli stride lengths, our study concludes that stride lengths alone do not resolve the debate over early hominin locomotor postures.

Locomotor anatomy and biomechanics of the Dmanisi hominins

AbstractThe Dmanisi hominins inhabited a northern temperate habitat in the southern Caucasus, approximately 1.8 million years ago. This is the oldest population of hominins known outside of Africa. Understanding the set of anatomical and behavioral traits that equipped this population to exploit their seasonal habitat successfully may shed light on the selection pressures shaping early members of the genus Homo and the ecological strategies that permitted the expansion of their range outside of the African subtropics. The abundant stone tools at the site, as well as taphonomic evidence for butchery, suggest that the Dmanisi hominins were active hunters or scavengers. In this study, we examine the locomotor mechanics of the Dmanisi hind limb to test the hypothesis that the inclusion of meat in the diet is associated with an increase in walking and running economy and endurance. Using comparative data from modern humans, chimpanzees, and gorillas, as well as other fossil hominins, we show that the Dmanisi hind limb was functionally similar to modern humans, with a longitudinal plantar arch, increased limb length, and human-like ankle morphology. Other aspects of the foot, specifically metatarsal morphology and tibial torsion, are less derived and similar to earlier hominins. These results are consistent with hypotheses linking hunting and scavenging to improved walking and running performance in early Homo. Primitive retentions in the Dmanisi foot suggest that locomotor evolution continued through the early Pleistocene.

Bipedal and quadrupedal locomotion in chimpanzees

AbstractChimpanzees (Pan troglodytes) habitually walk both bipedally and quadrupedally, and have been a common point of reference for understanding the evolution of bipedal locomotion in early ape-like hominins. Here we compare the kinematics, kinetics, and energetics of bipedal and quadrupedal walking and running in a sample of five captive chimpanzees. Kinematics were recorded using sagittal-plane digital high-speed video of treadmill trials. Kinetics were recorded via a forceplate. Metabolic energy cost was measured via steady-state oxygen consumption during treadmill trials. Consistent with previous work on chimpanzees and other hominoids, we found that the spatiotemporal characteristics, joint angles, ground reaction forces, and metabolic cost of bipedal and quadrupedal locomotion are similar in chimpanzees. Notable differences include hip and trunk angles, which reflected a more orthograde trunk posture during bipedalism, and mediolateral ground reaction forces, which were larger during bipedal walking. Stride frequencies were also higher (and step lengths shorter) during bipedal trials. Bipedal and quadrupedal walking among chimpanzees was similar to that reported for bonobos, gibbons, and other primates. The similarity in cost between bipedal and quadrupedal trials suggests that the adoption of bipedal walking would have had no effect on walking costs for early ape-like hominins. However, habitual bipedalism may have favored modifications of the hip to allow a more orthograde posture, and of the hind limb abductor mechanisms to efficiently exert mediolateral ground forces.

ReviewEconomy and Endurance in Human Evolution

SummaryThe evolutionary pressures shaping humans’ unique bipedal locomotion have been a focus of research since Darwin, but the origins of humans’ economical walking gait and endurance running capabilities remain unclear. Here, I review the anatomical and physiological determinants of locomotor economy (e.g., limb length and posture) and endurance (e.g., muscle volume and fiber type) and investigate their development in the hominin fossil record. The earliest hominins were bipedal but retained ape-like features in the hind limb that would have limited their walking economy compared to living humans. Moreover, the evolution of bipedalism and the loss of the forelimbs in weight support and propulsion would have reduced locomotor endurance in the earliest hominins and likely restricted ranging. Australopithecus evinced longer hind limbs, extended limb posture, and a stiff midfoot, suggesting improved, human-like economy, but were likely still limited in their endurance compared to modern humans. The appearance of skeletal traits related to endurance (e.g., larger limb joints, spring-like plantar arch) in Homo was somewhat mosaic, with the full endurance suite apparent only ∼1 million years ago. The development of endurance capabilities in Homo appears to parallel the evolutionary increase in brain size, cognitive sophistication, and metabolic rate.

Original ArticleMutualism and manipulation in Hadza–honeyguide interactions

AbstractWe investigated the ecology and evolution of interspecific cooperation between the Greater Honeyguide bird, Indicator indicator, and human hunter-gatherers, the Hadza of northern Tanzania. We found that honeyguides increased the Hadza's rate of finding bee nests by 560%, and that the birds led men to significantly higher yielding nests than those found without honeyguides. We estimate that 8–10% of the Hadza's total diet was acquired with the help of honeyguides. Contrary to most depictions of the human-honeyguide relationship, the Hadza did not actively repay honeyguides, but instead, hid, buried, and burned honeycomb, with the intent of keeping the bird hungry and thus more likely to guide again. Such manipulative behavior attests to the importance of social intelligence in hunter-gatherer foraging strategies. We present an evolutionary model for human-honeyguide interactions guided by the behavioral ecology of bees, non-human primates, and hunter-gatherers.

Mechanics of archery among Hadza hunter-gatherers

Highlights•Bow and arrow mechanics were measured experimentally among Hadza hunter-gatherers.•High-speed video was used to record mechanics during an archery contest.•Hadza bows were powerful (311 N draw weight) and efficient (71% energy transfer).•Simple bows are more powerful than often reconstructed in archeological studies.

Join Copernicus Academic and get access to over 12 million papers authored by 7+ million academics.
Join for free!

Contact us