Multidimensional radiative transfer: Applications to planetary coronae
Review articleOpen access
1977/06/01 Full-length article DOI: 10.1016/0032-0633(77)90063-0
Journal: Planetary and Space Science
Abstract:
AbstractA numerical solution to the integral equation for radiative transfer by resonance reradiation in an isothermal spherical atmosphere is described. The method presented is 100 times more efficient than earlier spherical radiative transfer models. The new model can accommodate density variations in the full three dimensional space and includes effects due to the presence of pure absorbers. Complete frequency redistribution is assumed for photon scattering. Applications of this model to the problem of solar photons scattered by atomic hydrogen in the atmospheres of Venus, Earth and Mars are described, and limb and disk profiles, as well as equivalent mean disk intensities for Venus, Earth and Mars, are presented.
Request full text