Gain self-scheduled H∞ control for morphing aircraft in the wing transition process based on an LPV model
Review articleOpen access

AbstractThis article investigates gain self-scheduled H∞ robust control system design for a tailless folding-wing morphing aircraft in the wing shape varying process. During the wing morphing phase, the aircraft’s dynamic response will be governed by time-varying aerodynamic forces and moments. Nonlinear dynamic equations of the morphing aircraft are linearized by using Jacobian linearization approach, and a linear parameter varying (LPV) model of the morphing aircraft in wing folding is obtained. A multi-loop controller for the morphing aircraft is formulated to guarantee stability for the wing shape transition process. The proposed controller uses a set of inner-loop gains to provide stability using classical techniques, whereas a gain self-scheduled H∞ outer-loop controller is devised to guarantee a specific level of robust stability and performance for the time-varying dynamics. The closed-loop simulations show that speed and altitude vary slightly during the whole wing folding process, and they converge rapidly after the process ends. This proves that the gain self-scheduled H∞ robust controller can guarantee a satisfactory dynamic performance for the morphing aircraft during the whole wing shape transition process. Finally, the flight control system’s robustness for the wing folding process is verified according to uncertainties of the aerodynamic parameters in the nonlinear model.

Request full text

References (0)

Cited By (0)

No reference data.
No citation data.
Join Copernicus Academic and get access to over 12 million papers authored by 7+ million academics.
Join for free!