Effects of nanoparticles on the ultrafiltration of surface water
Review articleOpen access
Abstract:

AbstractThe effects of nanoparticles on the fouling behavior of UF membranes were investigated by filtering river water containing natural organic matter (NOM). Self-dispersible carbon black (70–200 nm) was employed to model nanoparticles in natural water. The presence of nanoparticles transformed the mode of initial fouling from internal pore adsorption of NOM to intermediate pore blocking, which caused a significant flux reduction. The use of powdered activated carbon to adsorb organic micromolecules reduced internal pore fouling, but this effect on initial fouling mode did not much mitigate the overall flux decline. As filtration proceeded, cake filtration became the dominant fouling mode. The resistance-in-series model revealed that boundary-layer resistance contributed significantly to increased filtration resistance in the filtration of river water. The nanoparticles nullified boundary-layer resistance plausibly by removing organic macromolecules from river water, but aggravated cake resistance, which required chemical cleaning. Addition of calcium significantly increased the aggregate size of nanoparticles from 0.18–0.35 μm to 3.4 μm, and thus reduced pore blocking and total cake resistance.

Request full text

References (0)

Cited By (0)

No reference data.
No citation data.
Advertisement
Join Copernicus Academic and get access to over 12 million papers authored by 7+ million academics.
Join for free!