The transfection activity of R8-modified nanoparticles and siRNA condensation using pH sensitive stearylated-octahistidine
Review articleOpen access
Abstract:

AbstractEmerging evidence indicates that the efficiency of siRNA loading into an RNA-induced silencing complex (RISC) is a major factor in gene silencing at low doses. In particular, the release of siRNA from components delivered to the cytoplasm could be a first step for achieving maximum gene knockdown effect in siRNA delivery vector. To test this hypothesis, we used a stearylated-octahistidine (STR-H8) as a pH responsive polycation that facilitates the efficient release of siRNA into the cytoplasm, while a stearylated-octaarginine (STR-R8) was used as a conventional cationic polycation. As a fundamental structure, we used octaarginine (R8) and GALA, as a pH-sensitive fusogenic peptide, modified lipid envelope-type nanoparticles (R8/GALA-MENDSUV), as reported previously. When STR-H8/siRNA condensed complexes were loaded in the R8/GALA-MENDSUV, the luciferase knockdown effect was significantly increased compared to STR-R8/siRNA condensed complexes in time and dose dependent manners. Quantification of the released siRNA from the condensed complexes demonstrated that only the STR-H8/siRNA released significant levels of siRNA at pH = 7.4, the pH of cytoplasmic, compared with STR-R8/siRNA condensed complexes. In addition, imaging studies indicated that STR-H8/siRNA facilitated siRNA release. Collectively, these data reveal the importance of the controlled release of siRNA to the cytoplasm.

Request full text

References (0)

Cited By (0)

No reference data.
No citation data.
Advertisement
Join Copernicus Academic and get access to over 12 million papers authored by 7+ million academics.
Join for free!