Sound velocity determination in gel-based emulsions
Review articleOpen access

AbstractSound velocity is a main parameter in non destructive characterization, closely related to the elastic properties and to the microstructure of heterogeneous materials.The accurate determination of the sound velocity using pulse-echo technique relies on the ability to reduce pulse distortion and to measure specimen dimensions with a high precision. In the field of bio-mimetic materials and biological tissues, the nature of the specimen makes this last requirement highly difficult or inappropriate.The present work, using a through-transmission configuration, allows, in a stress free environment, to access the sound velocity in soft, low acoustic contrast materials without requiring the specimen dimensions. The specimen sound velocity is obtained from the echo time-of-flights through a Z-scan process providing the absolute medium sound velocity as reference.The technique uses an excitation burst at a frequency below the transducer resonance to ensure a significantly reduction in pulse distortions and improve signal-to-noise ratio. The accurate determination of the echo time-of-flight relies on a highly efficient cross-correlation/Hilbert transform signal processing.The method has been applied to gel-based emulsions of different microstructures considered as biomimetic phantoms, as well as to their constituents: pure gelatin and vegetable oil.

Request full text

References (0)

Cited By (0)

No reference data.
No citation data.
Join Copernicus Academic and get access to over 12 million papers authored by 7+ million academics.
Join for free!