Research letterComplexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore
Review articleOpen access

AbstractIn vitro incubation of isolated hexokinase isozyme I or isolated dimer of mitochondrial creatine kinase with the outer mitochondrial membrane pore led to high molecular weight complexes of enzyme oligomers. Similar complexes of hexokinase and mitochondrial creatine kinase could be extracted by 0.5% Triton X-100 from homogenates of rat brain. Hexokinase and creatine kinase complexes could be separated by subsequent chromatography on DEAE anion exchanger. The molecular weight, as determined by gel-permeation chromatography, was approximately 400 kDa for both complexes. The Mr suggested tetramers of hexokinase (monomer 100 kDa) and creatine kinase (active enzyme is a dimer of 80 kDa). The composition of the complexes was further characterised by specific antibodies. Besides either hexokinase or creatine kinase molecules the complexes contained porin and adenylate translocator. It was possible to incorporate the complexes into artificial bilayer membranes and to measure conductance in 1 M KCl. The incorporating channels had a high conductance of 6 nS that was asymmetrically voltage dependent. The complexes were also reconstituted in phospholipid vesicles that were loaded with ATP. Complex containing vesicles retained ATP while vesicles reconstituted with pure porin were leaky. The internal ATP could be used by creatine kinase and hexokinase in the complex to phosphorylate external creatine or glucose. This process was inhibited by atractyloside. The hexokinase complex containing vesicles were furthermore loaded with malate or ATP that was gradually released by addition of Ca2+ between 100 and 600 μM. The liberation of malate or ATP by Ca2+ could be inhibited by N-methylVal-4-cyclosporin, suggesting that the porin translocator complex constitutes the permeability transition pore. The results show the physiological existence of kinase porin translocator complexes at the mitochondrial surface. It is assumed that such complexes between inner and outer membrane components are the molecular basis of contact sites observed by electron microscopy. Kinase complex formation may serve three regulatory functions, firstly regulation of the kinase activity, secondly stimulation of oxidative phosphorylation and thirdly regulation of the permeability transition pore.

Request full text

References (0)

Cited By (0)

No reference data.
No citation data.
Join Copernicus Academic and get access to over 12 million papers authored by 7+ million academics.
Join for free!