Basic ScienceS100A16 mediation of weight gain attenuation induced by dietary calcium
Review articleOpen access

AbstractDietary calcium influences the regulation of energy metabolism, and weight gain is attenuated by a high-calcium diet. S100A16 is a novel calcium-binding signaling protein of the EF-hand superfamily that promotes adipogenesis. This study aimed to investigate the effect of S100A16 on weight gain attenuation with a calcium-rich diet. An obese rat model was produced after feeding with a high-fat diet. Animals were randomly divided into 4 groups according to the diet provided over 8 weeks: normal diet group; high-fat, normal-calcium diet group; high-fat, high-calcium diet (HH) group; and high-fat, low-calcium diet group. Serum biochemistry was analyzed, and body weight and visceral fat pads were measured. Expression of S100A16 was assayed by Western blotting. Adipogenesis was detected by oil red O staining. Increases in body weight and visceral fat weight were attenuated in the HH group. High-calcium diets decreased the concentrations of serum total cholesterol and triglyceride. Expression of S100A16 decreased in the HH group. Using the 3T3-L1 preadipocyte model, it was observed that elevation of intracellular Ca2+ via calcium ionophores led to the exclusion of S100A16 from the nucleus. Overexpression of S100A16 in 3T3-L1 preadipocytes enhanced adipogenesis, although a significant reduction in Akt phosphorylation was also detected. High-calcium diets were associated with a significant reduction in body weight gain. High-calcium diets may lead to nuclear exclusion of S100A16, which results in the inhibition of adipogenesis and enhanced insulin sensitivity.

Request full text

References (0)

Cited By (0)

No reference data.
No citation data.
Join Copernicus Academic and get access to over 12 million papers authored by 7+ million academics.
Join for free!