Complex dynamics of perfect discrete systems under partial follower forces
Review articleOpen access

AbstractEquilibrium points, primary and secondary static bifurcation branches, and periodic orbits with their bifurcations of discrete systems under partial follower forces and no initial imperfections are examined. Equilibrium points are computed by solving sets of simultaneous, non-linear algebraic equations, whilst periodic orbits are determined numerically by solving 2- or 4-dimensional non-linear boundary value problems. A specific application is given with Ziegler's 2-DOF cantilever model. Numerous, complicated static bifurcation paths are computed as well as complicated series of periodic orbit bifurcations of relatively large periods. Numerical simulations indicate that chaotic-like transient motions of the system may appear when a forcing parameter increases above the divergence state. At these forcing parameter values, there co-exist numerous branches of bifurcating periodic orbits of the system; it is conjectured that sensitive dependence on initial conditions due to the large number of co-existing periodic orbits causes the chaotic-like transients observed in the numerical simulations.

Request full text

References (0)

Cited By (0)

No reference data.
No citation data.
Join Copernicus Academic and get access to over 12 million papers authored by 7+ million academics.
Join for free!